If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+24x-20=0
a = 2; b = 24; c = -20;
Δ = b2-4ac
Δ = 242-4·2·(-20)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{46}}{2*2}=\frac{-24-4\sqrt{46}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{46}}{2*2}=\frac{-24+4\sqrt{46}}{4} $
| 1x+3x+1.5x=76 | | 7.2-y=5.8 | | X+x+5=x-3+1 | | 15+7x=32.5-3x | | x/2+x/3+x=120 | | 2(3w+4)/3=6 | | (6x+10)x6=60 | | 6+b×2=18 | | H(x)=x-((x^2)/100) | | 5(2x-7)=15x+10 | | 5^2a-10^a-2^(a+1)=0 | | 56+45x=0 | | 5(2x–7)=15x+10 | | 3z/10-1=-5 | | (q+6)/2=(q+2)/3 | | 5(3×-2)(x-3)=4(4x+5)+13 | | 5x/8+240=x | | 3z+5=-3 | | (32x-4)+2x=3x-4 | | a/3-7=11 | | 7m-22=44 | | 4x-3*2x+2=0 | | 23x-1=8 | | x+4x=630 | | n=25-3n | | 0,85x=x-12 | | 3y+2/3=2y+1 | | 12/x=x/27 | | 7x=5x-8/5 | | 3p-5=4p-9 | | 24/16=12/x | | (4-c)^2=64 |